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Abstract  

The deliverable presents the results obtained with the help of the Mercury simulator in order to 
estimate the efficiency and equitability of hotspot resolution mechanisms defined in D3.1 and tested 
on a small-scale simulator in D4.2. To this end, fast-time games are defined, with a central optimiser 
implementing the mechanisms computing the final flight/slot allocation. The game is played by agents 
representing the airlines present in the regulation, and who are tasked with sending information to 
the central optimiser regarding their own costs, in order for the latter to find the best possible 
allocation cost-wise. The deliverable defines the various games possible, combining different types of 
central optimisers and different types of agents, taking into account various degrees of rationality and 
behavioural biases for the decisions of the latter. The deliverable presents a theoretical framework for 
these behaviours, highly simplified but implementable in simple simulations. 

Different results with these simulations are presented. First, it is found that the approximation process 
used by airlines to communicate their costs to the optimiser has a major effect on the efficiency of the 
mechanisms. Second, it is found that, due to the variance of the regulation structure and the 
approximation issues, defining a performant rational agent is difficult. Despite this fact, the deliverable 
shows how one of the mechanisms (credit mechanism) was calibrated, including the rationality of 
agents in the corresponding game. It then shows the detrimental impact of the presence of rational 
agents – as opposed to honest ones – on the efficiency of two relevant optimisers, including the credit 
mechanism, as well as the impact of behavioural biases. Finally, it compares the aggregated gains 
potentially made with the various mechanisms in terms of efficiency and equity. 
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1 Introduction 

In this deliverable, we explore the mechanisms defined in D3.1 with more advanced cost functions and 
regulations than what was done in D4.2. Indeed, in this deliverable we use a tactical simulator called 
Mercury in order to extract realistic regulations that will then be used in quick simulations that we call 
games in the following. These games feature two main ingredients: a central optimiser, which can be 
thought of being part of the network manager, and the players, i.e. the airlines involved in the 
regulations. Hence, the main goal on this deliverable is to see if the new mechanisms defined for 
regulation resolution at arrival airports are good enough, as least in theory, taking into account fairly 
realistic behaviours from airlines. 

In fact, we are interested in this deliverable in exploring the efficiency of the central optimiser when 
faced with different behaviours from the players, but also in the behaviours themselves. For this, we 
play, fast-time, a series of “games” which are always played the same way: we first select how the 
regulation will be solved (for instance, basic UDPP), then the type of agents that will play the game: 
rational, honest, etc. We then sample regulations from a dataset we built (from historical data), ask 
the players to play the game, which implies for them to communicate some information on their cost 
functions to the central optimiser. The central optimiser can then compute the final allocation, based 
on its type and the information received. One can then compare this allocation to the allocation that 
would have been applied without any mechanism, the “first planned first served” (FPFS) one. 
Indicators related to how well the solving algorithm performs can then be computed. Indeed, the 
impact is typically estimated in terms of efficiency (how much the airlines gain in terms of cost) and 
equity (how much they gain with respect to other airlines).  

The simulations can also estimate the impact of the mechanisms when faced with agents applying 
different strategies, including agents that may be prone to behavioural biases for instance. They can 
also estimate the impact for different players, for instance major players vs. low-volume users. Hence, 
we are able in this deliverable to include a rational agent in the midst of honest agents, which may 
improve the efficiency for this particular agent, but decrease the efficiency for others. Since the 
regulations are more realistic than those used in D4.2, in particular in terms of cost structure of the 
airlines, the picture painted by the simulations presented in this deliverable may be considered as 
more accurate and may help a policymaker to make an informed decision for a future implementation 
of these mechanisms.  

The deliverable is structured in the following way: 

Section 2 presents the definition of the mechanisms and the different agent types used in the 
simulations. We also highlight in this section the most important experiments to be performed and 
why we perform them.  

Section 3 presents a theoretical framework for rational and agents with behavioural biases. The final 
implementation is a simplified version of the general case, due to the impossibility to derive a closed 
form for the optimal strategy in the credit mechanism.  

Section 4 presents the results of the simulations. We explore several types of results. First, we explore 
how much the approximation used by the airlines when communicating their cost impacts the results 
of the simulation. The next step is to examine the impact of the decisions of isolated agents on their 
own cost. Due to various reasons, among which the approximation process and the stochasticity of the 
regulation structure, agents struggle to properly map their actions to an expected gain in terms of cost. 
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This has a direct impact on the quality of the rational agent, which is supposed to be able to do this 
map particularly well in order to make the best decision. After that, we move on to see how having 
one or more rational players in the simulations impact the final allocation given by a specific 
mechanism. After doing the same for behavioural biases, we conclude this section by showing a high-
level comparison of the goodness of the different mechanisms in terms of efficiency and equity. 

In conclusions, we make considerations about the goodness of the framework used in this deliverable, 
but also its limitations, in particular in terms of definition of rationality and generalisation of the 
results, linked to the specific dataset used to produce the results. We suggest some possibilities 
regarding how this line of research could be improved and expanded, including some ideas that will be 
explored in D5.2 We save operational conclusions for D6.2, where the whole concept will be assessed 
from multiple angles, including the operational one. 
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2 Mechanisms and agents 

This section presents the experiments that we run in order to estimate the impact of the mechanisms 
in different environments. 

In order to do this, we use Mercury to build a regulation dataset comprising regulation information 
(duration, number of airlines etc.) and airline information (cost functions). These regulations are all 
generated for a single airport, Charles de Gaulle, based on the traffic dataset prepared for BEACON 
(see D2.1 and D2.2 for more information). This dataset is then used in a series of “games” played by 
the airlines involved in the regulation, that are further explained in this section and the following one.  

These games have the following features: 

• The agents type: can be honest (giving their best approximation of the real cost function to 
the central optimiser), rational, bounded etc. We divide the agents in two categories: 

o the main player, i.e. Air France, who is the major airline at this airport volume-wise. 

o the other players, i.e. all the other airlines present at the airport. Note that based on 
the regulation, not all airlines are present in all regulations. 

• The mechanisms themselves, for instance UDPP, by which the final allocation for the 
regulation is computed. 

With this procedure, and by combining the agent types and mechanisms, we are aiming at having a 
full picture of the mechanism’s impact, from a cost efficiency and equity point of view. Note that this 
is an ‘isolated’ view, meaning that the knock-on effects of the final allocation is unknown, as well as 
the exact impact on other performance indicators like passenger delay.  

In the following, we sometimes use the terms “one-sided” and “multi-sided” games. By using the 
former, we usually focus on the behaviour of one player against all the others, considered as 
background “noise”. For instance, if all players are honest, one might wonder about the effect of 
introducing a rational agent in the middle (see below for the exact meaning of these terms). In this 
case, we will consider the experiment as a one-sided, game, with a focus on the distinctive, rational 
player. On the other hand, if we switch all agents to a rational behaviour, we will speak of a multi-sided 
game, considering all players equally. This is merely a different point of view on similar situations. 

However, it is interesting to note that the full study of these games would be fairly different. For 
instance, computing the rational, optimal strategy of a player in a single-sided game (where other 
players do not change their strategy) is fairly easy, even analytically (see section 3). On the other end, 
in multi-sided game, the return (profit, or avoidance of cost) of a player depends in general on the 
strategy of other players. This is the domain of game theory, and in general the game must be analysed 
in terms of Pareto front (if it exists), which is a lot harder, especially in a stochastic game like the one 
defined here. 

In the following, we use the word “rational“ rather abusively, first because we only have an 
approximation for the single-sided optimal strategy, but also because we use this behaviour afterwards 
in a multi-sided game, where it might not represent the best strategy. This is merely to illustrate what 
would happen if everybody used a more aggressive profit-maximisation strategy, even slightly off, as 
opposed to the honest one. 
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2.1 Mechanisms 

The mechanisms tested for this deliverable have been introduced in deliverables D3.1 and D4.2, see 
Table 1. They all rely on the same high-level procedure: a hotspot resolution process is started. The 
NM, or a part of it that in this deliverable we also call central planner or central optimiser, sends the 
relevant regulation information to the airlines having flights involved in the regulation. The airlines can 
then take actions, in the form of prioritisations, parameters related to their cost functions, etc, 
communicated to the NM. The latter will then use this information to compute the final positions of 
each flight in the queue. Different indicators like the final cost for the airlines are then computed. The 
exact way the central optimiser solves the regulation depends on the mechanism activated, as 
explained briefly in Table 1. 

 

Table 1: Mechanism tested in D5.1 

Mechanism Description Comment 

UDPP Based on their own true cost functions, 
airlines set priorities to their flights. The NM 
then ‘merges’ the priorities to have the final 
allocation. 

Use standard UDPP concepts 
like Selective Priorities. 

UDPP+ISTOP After applying UDPP, the airlines give some 
parameters to the NM, used to approximate 
their cost function. The NM suggests two-
airline swaps that are beneficial to 
everybody. The airlines always accept the 
suggestions. 

The approximation is the 
same used across different 
mechanisms, see below. 

UDPP+ISTOP_TRUE Idem above, except the airlines provide the 
real cost function to the NM. Used for 
benchmarking. 

The efficiency of this 
mechanism should be 
between UDPP and 
NNBOUND. 

NNBOUND The airlines give some parameters to the NM, 
used to approximate their cost function. The 
NM then performs an optimisation, seeking 
the minimum total cost across airlines, while 
keeping changes of cost above zero for each 
airline (i.e. nobody can lose from the final 
allocation). 

Low volume users will not be 
affected by this mechanism, 
since they cannot lose from it 
and there is no intra-airline 
suitable swaps for them. 

NNBOUND_TRUE Idem above except that airlines give their 
true costs to the NM. Used for benchmarking. 

 

GLOBAL The airlines give some parameters to the NM, 
used to approximate their cost function. The 
NM then performs an optimisation, seeking 
the minimum total cost across airlines. 

Idem NNBOUND but without 
the “no-negative gain” 
constraint. 
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GLOBAL_TRUE Idem above except that airlines give their 
true costs to the NM. 

Best possible outcome from 
the social point of view (total 
cost). Equity likely to be very 
low. 

CM The airlines give some parameters to the NM, 
used to approximate their cost function. Each 
airline pays a certain number of virtual 
credits based on which parameters they 
chose. The NM then uses the parameters to 
rebuild cost functions and finds the global 
optimum (total minimum cost). 

Except for the approximation, 
this mechanism should be 
one of the best from the 
efficiency point of view, while 
achieving equity on the long 
run.  

Can be considered as a simple 
extension of GLOBAL. 

 

Note that, contrary to previous deliverables, we examine different flavours of some mechanisms: 
indeed, for ISTOP, GLOBAL, and NNBOUND, we want also to test the drop of efficiency of the 
mechanisms when approximated costs are used instead of real ones. This is crucial because of the 
credit mechanism, which by design uses approximated costs. The approximation is typically done using 
single or multi-steps functions. See section 4.1 for the type of functions used for the approximation. 

Note also that the auction is not included in the mechanisms tested in this deliverable. It was decided 
after the results from D4.2 and the human in the loop simulations to drop it. This is due to the 
complexity of playing the corresponding game, the difficulty to implement it, and the related problem 
of being able to automatise the resolution. More consideration about this mechanism can be found in 
D6.2 . While in D4.2 we used a pretty simple procedure to simulate rational and less rational agents, it 
looks like the full study of this mechanism is beyond the scope of the project. However, some 
preliminary work has been performed with the auction, and some considerations on rationality in this 
mechanism can be found in Appendix B. 

Finally, note that the only mechanisms that needs calibration is CM. Indeed, all the other mechanisms 
have no free parameter, on the contrary of CM. More details on these parameters can be found in 
section 3 and the calibration per se in section 4.3. 

2.1.1 Credit mechanism: implementation details 

We describe a little bit further the CM in this section. The heart of the mechanism is airlines providing 
a certain number of parameters to the central optimiser. The central optimiser then rebuilds airline’s 
cost function based on these parameters. As an example, we can take the ‘jump2’ archetype function, 
described by two parameters – a margin and a jump. Given these two parameters, the central 
optimiser will consider the cost of this particular flight as 0 if its delay is smaller than the margin, and 
equal to the jump value otherwise, effectively using a step function as an approximation to the real 
cost function of the airline. 

Once the central optimiser has collected all the parameters and rebuilt all the cost functions, it uses 
the GLOBAL algorithm, i.e. it solves for minimum total cost across airlines. On top of that, the airlines 
spend a certain number of credits based on the parameters that they communicated. For instance, 
using a value V for a jump will translate into a credit cost of (V-default_jump) x price_jump. 
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‘default_jump’ is the “free” jump parameter that the airline can use without spending credits. Any 
value bigger than that will decrease the number of credits available to the airline, and any value will 
add the credits. The exact number of credits gained or spent is driven by the ‘price_jump’ parameter. 
Note that for each parameter passed to the optimiser, there should be a default value and a price, 
which should be calibrated properly. This calibration procedure implies to set the values of all these 
parameters in order to reach the best outcome for the mechanism, both in terms of stability, efficiency, 
and equity. See section 4 to see how the calibration was performed. 

Finally, the airlines usually have access to a certain amount of credits at the beginning of the 
simulation, and carry their credits from regulation to regulation throughout the simulation. The initial 
endowment of credits should also be carefully chosen, as is highlighted in section 4. 

2.2 Agent types 

Different agents will be tested with the mechanisms, in order to see the impact of the mechanisms in 
different environments. The agent types are described in Table 2. 

Table 2: Types of agents. 

Agent type Description Comment 

Random A random agent provides random 
information to the NM regarding their 
cost function, usually based on 
uniform distribution. 

This is only used for testing or calibration. 

Honest Agents are said to be ‘honest’ when 
they communicate to the NM either 
their true costs or the best 
approximation they have of their true 
costs.  

Honest agents are not rational in the sense 
that they do not try to have the best allocation 
for themselves. 

Rational Agents are said to be rational when 
they communicate costs to the NM 
designed to minimise their expected 
cost in the mechanism. 

The agents in the model are not fully rational 
from an economic point of view, because we 
do not have a closed, exact form for their 
expectation. Instead we rely on different 
approximations, see section 4. 

Bounded Short for “agents with bounded 
rationality”, these agents include two 
“distortions” in their decision-making 
process, based on prospect theory 
(PT) and hyperbolic discounting (HD). 

Note that bounded-rationality in general is 
much wider than just a distortion of profit-
seeking optimiser’s decision making 
processes, for instance using heuristics, rules 
of thumbs etc. 

Bounded-
simple 

Due to the complexity of defining a 
rational agent, the above agent is 
hard to implement. A more simple 
bounded-rationality framework was 
used for some results. 

While the agent above is defined as a 
distorted version of the rational agent, 
notably with respect to its utility function, this 
agent is based on the honest agent and uses a 
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rule of thumb to approximate the behavioural 
distortion. 

 

In the model, we sometimes isolate a player from the others, in general the major airline in the Charles 
de Gaulle regulations, Air France. In this case we can apply a different type for this player than for the 
others. 

2.3 Experiments 

We are interested in combining the agent types and different mechanisms in order to study extensively 
the impact of the latter based on the environment. Table 3 shows a summary of the experiments and 
main rationale for them. In the table, “NI” stands for “Not Interesting”, (usually a trivial combination) 
“NA” for “Not Applicable, “FR” for “Future Research” (outside of BEACON scope). 

Table 3: Rationales for experiments in D5.1. 

Agents\mec
hanisms 

UDPP UDPP_I
STOP 

UDPP_ISTO
P_TRUE 

NNBO
UND 

NNBOUN
D_TRUE 

GLOBA
L 

GLOBAL
_TRUE 

CM 

All Honest Best 
baselin
e for 
intra-
airline 
optimis
ation 

Compa
rison 
with 
CM 

Impact of 
approxima
tion 

Compa
rison 
with 
ISTOP 
and 
CM 

Impact of 
approxim
ation 

Compa
rison 
with 
ISTOP 
and 
CM 

Impact 
of 
approxi
mation 

Compa
rison 
with all 
other 
mecha
nisms 

All Rational Idem 
honest 

FR NA FR NA Impact 
of 
gamin
g 

NA Impact 
of 
gaming 

All 
Bounded 

NI FR NA FR NA Impact 
of PT 

NA Most 
realisti
c 
assess
ment 
of 
biases. 
(Note: 
HD 
only 
applied 
here). 
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All honest 
except AF 
rational 

NI FR NA FR NA Impact 
of 
ration
ality in 
single-
sided 
game 

NA Impact 
of 
rationa
lity in 
single-
sided 
game 

All honest 
except AF 
bounded 

NI FR NA FR NA Impact 
of PT 
and 
HD in 
multi-
sided 
games 

NA Impact 
of 
biases 
in 
single-
sided 
game 

All honest 
except AF 
random 

NI FR NA FR NA Studyi
ng 
impact 
of 
decisio
ns. 

NA NA 
(becau
se 
positiv
e 
credits 
reserv
es 
cannot 
be 
enforc
ed) 

 

In summary, we are performing experiments: 

• in order to see the impact of some actions of the agents on the system and on themselves, 

• in order to see the impact of rationality and bounded-rationality, either in single-sided games 
or multi-sided ones. 

• in order to see the impact of the function approximation 

• in order to compare mechanisms. 

Note that for UDPP, having agents that are not honest is not interesting, as least not in our framework. 
First, rational agents coincide clearly with honest agents in this case1. Second, the behavioural biases 

 

 

1 : There is a small caveat. Indeed, this mechanism includes flight protection, which may protect a slot for a flight 

in exchange for another good slot for another airline. In this case, one may imagine that airlines may or may not 
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that we consider should not modify the agent decisions in this case. Indeed, PT is a monotonous 
modification of the utility function of the agents, which means that preference orders should be 
preserved when using it, and thus the priority given to each flight. HD does not even have a role in 
UDPP. 

The experiments are all run on a laptop using a python implementation, with a dataset built from SQL. 
The number of experiments used for extracting a given indicator in a specific case is typically around 
100 in the results section. 

2.4 Indicators 

In this deliverable, we are using mainly two indicators and small variation of them: 

The relative drop of true cost with respect to FPFS, either overall or broken down by size of airlines. In 
the following we will refer to it as the efficiency of the mechanism2. 

The equity of the final allocation across different airlines, itself broken down in two flavours: 

• the absolute equity (EQ1) 

• the relative equity (EQ2) 

To find more details about these two indicators, see D3.1. Here we give the exact definition used in 
this deliverable: 

𝐸𝑄1 = 1 −
∑ ∑ 𝑎𝑏𝑠(𝑐𝑖 − 𝑐𝑗)𝑗𝑖

∑ ∑ 𝑎𝑏𝑠(𝑐𝑖 + 𝑐𝑗)𝑗𝑖
⁄   

𝐸𝑄2 =  1 −
∑ ∑ 𝑎𝑏𝑠(𝑐𝑖/𝑛𝑖 − 𝑐𝑗/𝑛𝑗)𝑗𝑖

∑ ∑ 𝑎𝑏𝑠(𝑐𝑖/𝑛𝑖 + 𝑐𝑗/𝑛𝑗)𝑗𝑖
⁄   

with 𝑐𝑖 the drop of cost of flight 𝑖 with respect to FPFS and 𝑛𝑖 the number of flights of the same 
airline in the regulation. 
  

 

 

trigger flight protection in order to decrease the profit (increase) of other airlines. Hence, a rational agent would 
behave slightly differently from an honest one. But first, this effect is likely to be very small, and second, we 
consider that the objective function of the airline does not include other airlines' costs. This may seem obvious 
at first sight, but in general in economics, firms try to gain an advantage over their competitors, so a competitor’s 
loss is their gain. In any case, we do not take into account any of that in this deliverable. 

 

2 Note another definition of the efficiency could be to compare the drop of cost with respect the best case, i.e. 
with the global algorithm for instance. However, this definition would require to compute the ideal case in every 
case, which in some case may not be feasible or have any physical meaning (for instance using bounded agents 
with GLOBAL, see section 3). 
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3 Agent definition 

In this section we discuss the notion of rationality in the specific context of BEACON and we present 
the analytical work that led to the model implementation, the results of which are presented in section 
4. 

3.1 Rationality and BE in CM 

Rationality in economics has a very strong meaning: it refers to the behaviour of an agent making the 
best decision it can, given the information it has. The best decision is usually computed thanks to a 
utility function, sometimes the profit itself when dealing with companies. Indeed, given a utility 
function 𝑢 and the space of actions 𝐴 (or decisions) available to an agent, rationality is defined as taking 
the action that verifies: 

𝑎∗ = max
𝑎∈𝐴

𝑢𝑒(𝑎) 

where 𝑢𝑒 is the expected gain in utility.  

3.1.1 Rationality 

Trying to apply this definition to the CM case, for simplicity, we consider first the case where the 
decision is made on only one parameter, the jump parameter, and where the agent has to make a 
decision on only one flight. If one knows the probability of having a delay 𝛿𝑡 as a function of the jump 
parameter Δ𝑗, then the expected utility can be written as: 

ue(Δj) =  −∫ p(δt, Δj) C(δt) dδt, 

where 𝛿𝑡 is the delay allocated to the flight, 𝐶 its cost function, and 𝑝 the probability of having a delay 
𝛿𝑡 with a parameter Δ𝑗. Indeed, the basic assumption is that modifying the parameter will modify the 
position of the flight in the queue, everything else being constant. 

The delicate part is to estimate p(δt, Δj), in particular because of the stochasticity of the regulations, 
see section 4.2. Indeed, it is hard to find a probability function that fits all possible flights in all possible 
regulations. Here we proceed with a significant approximation, to be able to compute a closed form. 

First, we assume that the cost function in reality is a step function, C(δt)  =  J0θ(δt − m), with m the 
real margin (I.e. based on true cost function). Second, we assume a simplified form for the probability: 

p(δt, Δj) =  
1

𝐴
 e−

δt − μ(Δj)
𝐴  

 
With only the expected delay varying as a function of Δ𝑗. 𝐴 is a free parameter, which drives the 
variance of the probability function. 

This allows for a simple form of the expectation: 

𝐮𝐞(𝚫𝐣) =  −𝐉𝟎 𝐞𝐱𝐩 (−
𝐦 −  𝛍(𝚫𝐣)

𝑨
)   
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( 1 ) 

 

Note that if 𝜇 is a decreasing function, then the expected cost decreases (as expected). Thus, trivially, 
if the player can set the jump parameter freely, they set the highest one possible (which will be 
important for section 3.1.2). For the same reason, in a one-shot game, even with credits, the player 
will set the highest parameter possible available with the amount of credits they have, since the latter 
cannot be spend in the future. Only when the player knows that there is a future regulation will they 
spend less than their available credits. 

We now introduce the price of parameter 𝑝𝑗, such that the player will spend c =  p𝑗  Δj. We also 

assume that 𝜇 is a linear function, and we write the expected utility as: 

ue(c) =  −J0e−(a c + b) 

with μ(x) =  − a1x – a2, a =
a1

A pj
, and b =

m+a2

A
. The parameters 𝑎1 and 𝑎2 are two additional 

parameters driving the response of the average delay as a function of Δ𝑗. 

Assuming that the player is myopic and can only see the next two iterations, they will have to minimise 
the total expected utility: 

ue(c) =  −J0e−(a c + b) −  J0′e−(a (𝑐̃−c)+ b) 

Considering a Poisson law for the appearance of the second regulation 
e

−
τ
λ

λ
 and a rational discount 

factor e
−

τ

𝜏0  (see deliverable D4.1 for the definition of discount factors), the expectation becomes: 

ue(c) =  −J0e−(a c + b) −  ∫ J0
′ e−(a (𝑐̃−c)+ b) e

−
τ
λ

𝜆
 e

−
τ

τ0dτ 

An optimum exists in general, and is situated in: 

c∗ =  
c̃

2
+  

1

2𝑎
log

𝐽0

𝐽0′
 −

1

2𝑎
log 𝐵 

where 𝐵 is the discount factor B =
τ0

τ0+λ
. 

Note that this expression is mostly driven by the ratio 𝐽0/𝐽0
′ , i.e. the relative importance of the jumps 

in the first and the second iteration. Note also how, when the iterations are more spaced out (higher 
𝜆), 𝑐∗ increases, i.e. the player tends to put more credits in the first iteration. Likewise, the stronger 
the discount factor (higher 𝜏0), the more credits the player will put in the first iteration. Finally, 
increasing the price of the parameter tends to decrease the amount of credits spent, as expected. 

3.1.2 BE version 1 (‘bounded’ agent) 

Using PT and HD introduces two modifications to the above equations. Indeed, instead of using the 
pure profit (or avoided loss) in the expectation, one can use instead the generalised utility function, or 
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prospect function 𝑢(𝐶) = (−𝐶)𝛼 (see D4.1 for more details3 about the prospective function). The 
expectation is thus: 

ce(c) =  J0
𝛼e−(a c + b)  + ∫ J0

′ 𝛼
e−(a (𝑐̃−c)+ b) e

−
τ
λ

𝜆
 e

−
τ

τ0dτ 

On top of that, we use HD, whereby the exponential discount used previously becomes 
1

1+𝑘𝜏
. Using 

both these modifications leads to the following expression: 

c∗ =  
c̃

2
+ 

𝛼

2𝑎
log

𝐽0

𝐽0′
 −

1

2𝑎
log 𝐵′ 

with B′ =  e−kλ E1(1/kλ)/(kλ), and 𝐸1the exponential integral function, computable numerically. 

While most previous remarks apply to this expression, we can also notice that the risk aversion 𝛼 
modifies the amount of credits spent. Indeed, the higher the aversion (the smaller 𝛼 is), the smaller 
the player will spend. 

 

3.1.3 Application to full games and implementation. 

Extending the previous expression to multi-iteration game is not easy. Indeed, while we have only one 
variable in the previous case (the amount of credits spent in the first iteration), a game with N 
iterations has in general N-1 variables. While it should be in principle feasible to infer the general 
expression by assuming stationarity, for this deliverable we keep the myopic assumption, i.e that 
agents play every time as if there were only another iteration coming after the current one. 

The second extension that we need to do relates to multiple flight optimisation. First, we need to 

notice that the marginal gain in utility decreases with the amount of credits spent, i.e. 
𝑑2𝑢𝑒

𝑑Δ𝑗2 < 0. This 

ensures that the airline, in general, does not put all its credits on the most important flight. Indeed, 
after having spent a certain amount of credits on the most important one (the one with the highest 
marginal return4), it will be better to invest credits in another flight. One could in principle compute 
the optimal allocation of credits among the different flights (where all final marginal gains are equal), 
but a closed form is hard to derive. As a consequence, we use a slightly easier procedure, which should 
yield similar results. 

First, we compute the optimal credits spent, as if flights were independent. Then, we compute the 
total number of credits spent, by average the relevant parameters over all flights (in particular 𝐽0). 

 

 

3 We just remind the reader that 𝛼 in this expression, which smaller than 1, drives the so-called aversion of the 
decision maker to risk. The smaller the parameter, the more likely they will make a decision where uncertainty 
is small, to the detriment of the expected profit for instance. 

4 The “marginal return” should be understood in general as the number of euros saved by increasing the amount 
of credits spent by one unit. However, in the context of utility maximization or, like here, of prospect theory, the 
marginal return is the increase in the utility/prospective function. 
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Finally, we divide the credits among flights based on the relative amounts found in the first step. This 
procedure is equivalent to considering that the airline chooses first the amount of credits that it will 
spend based on the average importance of its flight, and then dispatches credits among flights based 
on their relative importance, taking into account non-linearities in the utility function and probability 
of delay at the same time. 

 

3.1.4 BE version 2 (‘bounded-simple’) 

For reasons explained in section 4.2, we expect the previous implementation of bounded agents to 
have some limitations, mainly because of the limitation of the underlying rational one. Thus, we 
decided to use BE, and more specifically PT, in a more direct way, bypassing the need to define a 
rational agent. 

Indeed, the second version of the bounded agent, that we call bounded-simple, is defined with respect 
to the honest agent, in a similar way that was developed and reported in D4.2. In this case, we start 
from the simple realisation that the cost function itself can be considered as a kind of expected (anti-) 
profit itself. In other words, the application of the utility function could be to simply distort the cost 
function itself. In this case, we do not have a utility-maximisation process afterwards, assuming that 
the honest behaviour could be an acceptable approximation for the rational one in general. This allows 
us to avoid heavy approximations in terms of probability computation and long-term rewards. An 
important drawback is that there is no way to include HD in this framework. 

The implementation makes use of the full prospect function in order to distort the cost function. If 
𝐶(𝛿𝑡) is the cost function, then the agent will first compute 𝑢(𝐶(𝛿𝑡) − 𝐶𝐹𝑃𝐹𝑆), where 𝐶𝐹𝑃𝐹𝑆 is the cost 
of the flight in the FPFS queue, taken as the point of reference, and where the utility is: 

𝑢(𝑥) = 𝑥𝛼  𝑖𝑓 𝑥 > 0 
          = 𝜆′(−𝑥)𝛼    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The function is then offset to be always positive (because of next step). Finally, the approximation 
process is applied to this new function, with the margin and jump communicated normally to the 
central optimiser. 

 

3.2 Rationality and BE in GLOBAL 

3.2.1 Rationality 

The rationality for an agent playing a game with the GLOBAL algorithm is easy to deduce from the CM 
case. Indeed, the only difference between both games is the fact that the player pays for the 
parameters in the latter, and not in the former. Using equation (1), it is easy to see that increasing Δ𝑗 
will always increase the expected utility. As a consequence, the rational behaviour in this case is to set 
Δ𝑗 to its maximum value (which is capped in the simulations).  

3.2.2 BE version 1 (‘bounded’ agent) 
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Defining BE as a distortion of the rational case seems impossible in this case. Indeed, the optimal action 
being to maximise the jump parameter, there does not seem to be any room for behavioural biases, 
at least not from the PT and HD discount point of view. As a consequence, we only use the simple 
version of the bounded agent with GLOBAL, see next section. 

3.2.3 BE version 2 (‘bounded-simple’ agent) 

While we cannot rely on the rational case to define the BE one, we can use the honest one, which is 
well defined and not singular for GLOBAL. In fact, we use the exact same procedure as in the CM case, 
modifying the cost function with the prospect function, running the fitting procedure, and then 
communicating the parameters for the central optimiser. The only difference is the agent does not pay 
for the parameters like in the CM case. 
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4 Results 

The aim of this section is to present what happens when we implement the agents described in 
sections 2.2 and 3 and let them play the games defined in section 2.1, measuring the indicators 
presented in 2.4, using the dataset described at the beginning of section 2. However, before presenting 
the results per se, we explore the agents and the simulation process, calibrating the model in the 
process. We also note that the main objective is to assess the efficiency of the new BEACON 
mechanisms, ISTOP and CM, the other mechanisms tested being here for comparison and 
benchmarking. 

We start by having a look at the approximation process mentioned in section 2.1. The impact of this 
process (linked to how well the approximated cost functions represent the real costs of the airlines) 
has to be understood in particular with regards to the CM, which relies at its heart on such an 
approximation.  

We then move on in section 4.2 to explore the notion of rationality and BE in the GLOBAL and CM 
mechanisms. More specifically, we want to explore the impact of the decision on agent on its final 
cost, and how the difficulty to capture this relationship impacts the definition of rationality.  

Section 4.3 shows how the CM – the only mechanism with free parameters – was calibrated. This 
comprises also the calibration of the rational agent playing the CM, using results from section 4.2. 

Once the model and the agents are calibrated, we can study how rationality impacts the efficiency of 
the mechanism, or more specifically how well the latter works when honest or rational agents play the 
corresponding games. This is what we do for GLOBAL and CM, the only mechanisms for which a rational 
player has been defined. 

The next step is to study the impact of BE and how the corresponding agents fare in the corresponding 
games, which is done in section 4.5, in a similar way than what was done for rationality. 

Finally, we perform a high-level comparison between all mechanisms in section 4.6. Using different 
kinds of agents defined for each mechanism, we show how efficient and how equitable the latter can 
be expected to be.  

 

4.1 Impact of cost function approximation process 

First, we are examining how the cost function approximation process impacts the mechanisms that 
use it. Indeed, as explained in section 2, for some of the mechanisms, we defined two distinct flavours, 
one where the central optimiser used approximated cost function, and one where they used real ones. 
The main reason for that is to see the impact of the approximation process on CM, which by design 
uses approximated functions. 

Indeed, at the heart of the credit mechanism, there is the idea that if a flight puts more pressure on 
the system, the corresponding airline should pay for it somehow. This is required in order to avoid 
having airlines inflating their cost in order to have a better allocation for their flights. The way it was 
abstracted in BEACON originally was through the use of two paying parameters representing the 
features of the actual cost function. If increasing one of the parameters would likely lead to a better 
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allocation for the flight (all other things equal), then the airline should pay for it. It was decided to use 
a virtual currency, that we call credits, to pay for this. 

Hence, by design, the credit mechanism uses an approximation of the cost function to find the best 
allocation. This design was decided on in early experiments with fairly simple cost functions for the 
flights, and was found to be reasonable with two parameters, a ‘margin’ and a ‘jump’. In particular, 
the functions used for D4.2 were quite simple and easily approximated with such a process. The 
approximated cost function is then defined as being null if the slot of the flight implies a delay smaller 
than the margin, and equal to the jump value otherwise. Margins are thus defined in minutes and 
jumps in euros. See Table 4 for an illustration of this function ('jump2'). 

In this deliverable, we are more interested in looking at more realistic cost function, as produced by 
the simulator Mercury and its advanced cost structure capabilities. These cost functions are typically 
more complex, due to the interplay of passenger connections and aircraft turnaround, as shown in 
Figure 1. 

 

Figure 1: Examples of realistic cost functions taken from Mercury. 

It is thus natural to look at how well the adopted step functions can approximate these cost functions, 
and, more importantly, how they impact the mechanisms. Indeed, the main point of the mechanism is 
to minimise declared costs. If the declared costs (based on step approximations) are far from the real 
cost functions, the mechanism will not work as intended. For instance, the ISTOP mechanism may 
suggest a swap between four aircraft (in two different airlines) that it thinks will decrease the cost for 
both airlines. However, it might not be true because of a poor approximation. Note that in the model, 
the suggestions from ISTOP are always accepted by the airlines, as opposed to how the mechanism is 
intended to work in reality – should it be implemented, where airlines can refuse the swap. Hence, in 
the first case, we shall see a drop in the efficiency in the mechanism (i.e. less cost saved), while in a 
the second case the suggestions will simply be discarded. However, even in the second case, beneficial 
swaps may still not be suggested because of the inferior approximation. 

In order to explore this issue, we consider several approximations for the cost function (called 
“archetypes” in the following text), summarised in Table 4. 

Table 4: Archetype functions for approximation. 

Archetype 
function 

Definition Illustration 

Jump Defined by parameters: slope 𝑎, margin 𝑚, 
jump 𝑗: 

𝑐(𝑥) = 𝑎𝑥          𝑖𝑓 𝑥 < 𝑚 
          = 𝑎𝑥 + 𝑗   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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Jump2 Defined by parameters: margin 𝑚, jump 𝑗: 

𝑐(𝑥) = 0          𝑖𝑓 𝑥 < 𝑚 

             = 𝑗           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Jump3 Defined by parameters: slope 𝑎, margin 𝑚, 
jump 𝑗, offset 𝐴: 

𝑐(𝑥) = 𝐴 + 𝑎𝑥          𝑖𝑓 𝑥 < 𝑚 
          = 𝐴 + 𝑎𝑥 + 𝑗   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 

Double 
jump 

Defined by parameters: slope 𝑎, margin 𝑚1, 
jump 𝑗1, margin 𝑚2, jump 𝑗2: 

𝑐(𝑥) = 𝑎𝑥                       𝑖𝑓 𝑥 < 𝑚1 
          = 𝑎𝑥 + 𝑗1              𝑖𝑓 𝑚1 < 𝑥 < 𝑚2 
          = 𝑎𝑥 + 𝑗1 + 𝑗2     𝑖𝑓 𝑥 > 𝑚2 

 

 

Double 
jump2 

Defined by parameters: margin 𝑚1, jump 
𝑗1, margin 𝑚2, jump 𝑗2: 

𝑐(𝑥) = 0               𝑖𝑓 𝑥 < 𝑚1 
          = 𝑗1              𝑖𝑓 𝑚1 < 𝑥 < 𝑚2 
          = 𝑗1 + 𝑗2     𝑖𝑓 𝑥 > 𝑚2 

 

Double 
jump3 

Defined by parameters: slope 𝑎, margin 𝑚1, 
jump 𝑗1, margin 𝑚2, jump 𝑗2, offset 𝐴: 

𝑐(𝑥) = 𝐴 + 𝑎𝑥                       𝑖𝑓 𝑥 < 𝑚1 
          = 𝐴 + 𝑎𝑥 + 𝑗1              𝑖𝑓 𝑚1 < 𝑥

< 𝑚2 
          = 𝐴 + 𝑎𝑥 + 𝑗1 + 𝑗2     𝑖𝑓 𝑥 > 𝑚2 

 

 

In order to estimate how appropriate the archetypes are, we use the following procedure: 
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• we sample regulations coming from the dataset we built previously, 

• we extract the cost functions of all airlines involved in the regulation, 

• we fit each function using each of the previous archetypes, one after the other, 

• we compute the coefficient of determination R2for each regression5, 

• we aggregate the R2 coefficients, defining: 

o the number of regressions with a positive R2, 

o the average R2 on these regressions. 

The results are shown in Figure 2. 

 

Figure 2: Goodness of fit when regressing cost functions with different archetype functions. 

 

A first conclusion from this figure is that none of the proposed functional forms are excellent at 
approximating the real cost functions, unfortunately (as can be seen from the relatively low R2). It 
seems that these realistic cost functions are much harder to capture using a small number of 
parameters, at least using these archetype functions. On the contrary, during the first stage of the 

 

 

5 The 𝑅2 coefficient is defined as: 𝑅2 = 1 −  
∑ (𝑦𝑖 − 𝑓𝑖)

2
𝑖  

∑ (𝑦𝑖 − 𝑦̅)2
𝑖

⁄ , with 𝑦𝑖the experimental points, 𝑓𝑖  the 

predicted points, and 𝑦̅ the mean of the experimental points. It measures how well do the predicted points 
coming out of a model match the experimental ones. 
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project, we used cost functions that were a lot simpler and thus easier to approximate. Only using the 
“jump2” archetype yielded satisfactory results for these. A second conclusion is that including the 
slope in the functional form seems to significantly improve the regressions. Including an offset 
improves them even more. Finally, there is no notable benefit in using two steps instead of one.  

A natural conclusion would then be to use jump or jump3 instead of the “jump2” one, as initially 
planned. However, this implies to add one or two prices for each new parameter, and the experiments 
to be performed in this deliverable (and the next one D5.2) would be fairly complex because of this. 
We thus choose to use a compromise: all agents use the “jump3” functional form, but the slope and 
the offset are always given “honestly”. By ‘honestly’ we mean that the values given are the ones 
obtained out of the approximation process, i.e. the ones we are fitting the real cost function the best. 
We have also further considerations on this approximation issue in the conclusions. 

The impact of the approximation on the mechanisms themselves are also crucial. In Figure 3, we show 
the efficiency of different mechanisms, in particular using true cost functions and approximated ones 
(all agents are honest in these simulations).  

 

 

Figure 3: Efficiency of mechanisms with different approximations for the cost functions as well as with the 
true cost functions. 

As clearly seen in the figure, the approximation has a big impact on the efficiency. Using jump2 drops 
the efficiency of GLOBAL and NNBOUND by a factor 5, and makes UDPP+ISTOP less efficient than UDPP 
alone, highlighting the destructive power of erroneous information on the system. ‘Jump3’ seems to 
be faring better, allowing to have a fairly smaller drop in efficiency. In particular, the approximation in 
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ISTOP does not completely destroy the UDPP gains, even though it is clearly a drawback to use in these 
conditions. The ‘jump’ approximation seems to provide the best results among all the functional forms 
except ISTOP, for a yet unknown reason. It is also striking to note that UDPP is almost as efficient as 
GLOBAL or NNBOUND with this approximation. This is an important point that we will discuss in the 
conclusions. 

Finally, we can note that GLOBAL, even in its most perfect form, is barely better than NNBOUND. 
Indeed, we are expected the low-volume users to be impacted negatively in GLOBAL, because they 
cannot gain anything. Hence, the difference between GLOBAL and NNBOUND should come mainly 
from how the low-volume users are treated. This indicates probably that the global efficiency is not 
highly dependent on the low-volume users, as least in this case. 

4.2 Impact of decisions in GLOBAL and CM 

We are then interested at looking at how the agent decisions impact the mechanisms. By agent 
decisions, we specifically refer to the values the airlines transfer to the NM to rebuild the approximated 
cost function, e.g. the jump parameter. 

4.2.1 One regulation, one specific flight 

The first experiment we run is to see how the parameters given by the airlines actually influence their 
final allocation slot. It is natural to think for instance that, all other things being equal, increasing the 
jump value of a given flight will lead to a better slot for it. Indeed, the optimiser will realise that it is 
more fruitful to try to put this flight early in the queue in order to avoid the (declared) jump and its 
cost for the objective function. This is the reason why the airline has to pay for such an increase in the 
CM. 

In order to explore this issue, we consider a setup where the main player (AFR) plays at random, while 
all the other agents are honest. We use the GLOBAL mechanism in order to see better the impact of 
different decisions. We then record how much delay each flight got in the final allocation (with respect 
to FPFS) against the magnitude of the change in the parameter. 

We consider first a single instance of regulation, used in multiple simulations. Here, we ask the player 
only to modify at random one of the parameters, margin or jump, of their first flight. Figure 4 shows 
the cost as a function of the relative jump increase. The plot also includes an average made on 15 
quantiles. 
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Figure 4: Evolution of drop of cost as a function of the difference between the jump parameter chosen by the 
agent and the default jump parameter. The orange line is an average on 15 quantiles, with corresponding 

standard errors. 

 

As expected, increasing the size of the jump increases the likelihood a having smaller delays. One can 
note also the threshold effect, which should be expected as well: as soon as the cost is higher than 
some other flight competing for the same slots, this flight is prioritised higher and the cost drops. 

Figure 5 shows a similar plot for the margin instead. The picture is more complex, with a non-
monotonous behaviour. In fact, by setting a very low margin (say, 0), the flight becomes insensitive (as 
far as the declared cost is concerned) to the actual slot it is allocated to. Hence, the optimiser should 
put it in last position, and thus the cost is very high. When the margin increases, the optimiser sees an 
opportunity to put it early in the queue, where its declared cost is small. This happens roughly just 
before the honest margin is hit, as expected.  

After that, the margin is bigger than the actual one, and thus the optimiser sometimes allocates it to a 
slot that is actually more expensive for the airline. Hence the real cost increases again with the declared 
margin. 

https://www.sesarju.eu/


D5.1 FIRST TACTICAL MODEL AND RESULTS  

   
 

Page I 28 
 

  
 

 

 

Figure 5: Evolution of drop of cost as a function of the difference between the margin parameter chosen by 
the agent and the default margin parameter. The orange line is an average on 15 quantiles, with 

corresponding standard errors. 

 

The conclusion to draw from these figures is that for a given regulation and a given flight, it’s quite 
easy to see the impact of changing the jump parameter on the system6, even if some noise is present. 
Hence, a rational agent that would like to increase its profit (minimise its cost) should increase the 
jump parameter, for instance. We also note that the non-monotonous relationship for delay and 
margin complicates a lot the picture, since airlines would need to have more information on the flight 
in order to make the correct decision, as opposed to blindly decreasing the margin in the hope of 
having a smaller cost. 

4.2.2 One regulation, one random flight 

While the impact of a decision is pretty clear on a specific flight in a specific regulation, we are now 
interested in looking at the impact of a decision on a random flight, while still keeping the same 
regulation throughout each iteration of the game. 

The results are presented in Figure 6 and Figure 7. On the contrary of the previous case, the effect of 
the decision is barely visible, both for the jump and the margin. The correlation coefficient is indeed 

 

 

6 The correlation coefficients are respectively -0.27 and -0.14 (both significant) for delay and cost. 
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smaller than the last case, with -0.11 for the jump parameter for instance, still statistically significant 
nonetheless. Note also how the shape for the margin seems more monotonous in this case. 

 

Figure 6: Evolution of delay with respect to FPFS as a function of the difference between the jump parameter 
chosen by the agent and the default jump parameter. The orange line is an average on 15 quantiles, with 

corresponding standard errors. 
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Figure 7: Evolution of delay with respect to FPFS as a function of the difference between the margin 
parameter chosen by the agent and the default margin parameter. The orange line is an average on 15 

quantiles, with corresponding standard errors. 

 

 

 

4.2.3 Random regulation, random flight 

Finally, we are looking at the impact of a decision on a random flight in a random regulation, thanks to 
Figure 8, where we randomised the regulation, the flight on which a random decision was applied, and 
the decision itself. In this case, one can barely see a trend. The correlation coefficient in -0.038 and, 
while still statistically significant, shows almost no link between the decision and the final delay 
assigned to the flight. 
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Figure 8: Evolution of delay with respect to FPFS as a function of the difference between the jump parameter 
chosen by the agent and the default jump parameter. The orange line is an average on 15 quantiles, with 

corresponding standard errors. 

 

This simple fact is an important one and has several consequences: 

• Theoretically, the definition of a rational behaviour assumes that the agent is able to know 
which decision it should take, i.e. it knows the relationship between its decision and its 
consequences. The previous figure shows that this mapping is particularly noisy at an 
aggregated level, and thus a rational agent would struggle to use this mapping to make 
significant gains. 

• The difficulty to define a rational agent has also a direct consequence on the possibility to 
define a bounded agent, since the latter is a distorted version of the former (at least when 
using HD and PT). Hence, in section 2 and 3 we introduced a simpler version of the bounded 
agent, not based on the rational agent. 

• The difficulty of defining a rational agent is directly linked to the level of information given to 
the airline. Indeed, one can introduce more information (features in ML language) that would 
help make the mapping between the delay and the decision, for instance the absolute position 
of the flight in the FPFS queue. Other information should however be kept hidden from the 
player, for instance the cost functions of the other airlines. The natural framework to compute 
a better rational agent is reinforcement learning, a powerful tool to harness decision-making 
processes in iterated games, especially in stochastic environments. We go back to this in the 
conclusions. 

• Practically, it also means that real players would struggle to find a good strategy to make gains 
beyond UDPP. We will discuss more in detail the consequences of this point in conclusions. 
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4.3 Calibration of CM 

In this section, we are interested in looking at how the credit mechanism works and how its parameters 
should be set. For simplicity, we explore a particular version of the game where only the jump 
parameter is “played”, i.e. that the agents are honest in all cases on all parameters, which are free, 
except for the jump parameter.  

Given this simplified game, the parameters that are interesting to explore are the following: 

• the default jump, i.e the “free” jump, 

• the price of the jump, 

• the initial number of credits, 

On top of that, we are going to explore a simple parameter, called “reinjection”, linked to ‘quasi-
honest’ agents, and we show how we calibrated the rational agent for CM. 

An important difference between the CM and the other mechanisms is the fact that there is a ‘memory’ 
of the agent from one iteration to the other because of the fact that credits are carried out. Hence, 
when we perform 100 iterations for instance, these are not 100 independent ones, since at the 
beginning of each iteration, the agents have the amount of credits they used to have at the end of the 
previous. This is in contrast with all other mechanisms, where agents have a blank slate at the 
beginning of each iteration. 

A consequence for CM is that one has to study the stationarity of the game, i.e. state variables (here, 
credits) depends on the iteration index. For this game, we have encountered mostly three cases: 

• Absorptive: the number of credits goes to 0 after some iterations. It can go up again later due 
to some small regulations for instance, but always goes back to a very small value. 

• Stable: in this case, the number of credits is fairly stable throughout iterations. 

• Explosive: in this case agents have more and more credits, going to infinity when the number 
of iterations is big. 

Note that we did not really explore other cases (notably periodic, chaotic), even though a more 
thorough study should be performed. Also, note that some transient regimes sometimes exist in the 
first few iterations, before the stabilisation happens. 

4.3.1 Default jump parameter 

The default jump parameter is crucial because it conditions the inflation or deflation of credits, at least 
with honest agents. Indeed, with the honest agents, the jump and margin parameters communicated 
to the central optimiser are the ones coming from the regression. If the default parameter is too high, 
airlines will thus make credits automatically, when the regression gives a parameter higher than the 
default one (leading to explosive regimes). If it is too low, the airlines will not have enough credits to 
pay for the ideal parameter from the regression (leading to absorptive regimes). We are thus aiming 
at a middle ground, where airlines have quite a stable amount of credits (stable regime). Figure 9 shows 
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the number of credits of the main player and the other airlines (all honest), with a generous default 
parameter (3000 euros). In this case, the main player sees its number of credits increase indefinitely, 
because the average honest jump is obviously smaller than the default one. 

 

Figure 9: Evolution of credits throughout iterations, average for all airlines (blue) and for AFR (orange). 

Measuring the credits of AFR on the last 50 iterations while sweeping the default jump parameter 
allows us to have a more systematic picture of the effect of the parameter, as shown in Figure 9. In 
this figure, we also show the slope of a regression performed on the last 50 iterations, in order to see 
the stationarity of the credits, as well as the standard deviation on the last 50 iterations, in order to 
see the variance of the process7.  

 

 

 7 Some plots illustrating the transition between the different regimes can also be found in Appendix A. 
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Figure 10: Top: slope obtained out of a regression on the credits in the last 50 iterations of the game. Middle: 
average credits of AFR during the last 50 iterations. Bottom: Standard deviation over average on last 50 

iterations. 

The conclusion from Figure 10 seems to be that 90 euros as a default parameter seems to be a good 
choice, allowing to have a stable process without compressing credit fluctuations too much. An 
example of the evolution of the number of credits with this parameter is displayed in Figure 11. 

 

Figure 11: evolution of the number of credits for all airlines (blue) and AFR (orange) on 50 iterations for a 
default jump parameter equal to 90 euros. 
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4.3.2 Price for jump parameter 

The price that the airline has to pay for deviating from the default parameter is in general a crucial 
parameter, since it modifies the value of credits in real money. However, when only one parameter 
has to be paid, the price is actually only a rescaling factor, at least after the transient regime due to 
the initial credits has passed. Figure 12 illustrates this fact, with three different runs displaying similar 
behaviour, up to a scaling factor. 

 

Figure 12: Evolution of credits for AFR for three values of the jump price: 0.01 (top), 0.1 (middle) and 1. 
(bottom). 

Hence, we will fix the price to 0.01 in the following, similarly to what was done with the human in the 
loop simulations. 

 

4.3.3 Initial number of credits 

The initial number of credits should come into play either only in the transient regime of the evolution 
of credits during the simulation, if the credits are in an unstable regime, or simply offset the level of 
credits in the stationary regime. In the latter, that we selected previously thanks to the default jump 
parameter, the agents tend to have a stable number of credits, spending roughly as much as they gain. 
In Figure 13 we show what happens when we endow 0, 200, and 500 credits to all agents before the 
first iteration. 
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Figure 13: Evolution of credits in different runs for different initial credit endowments (0, 200, and 500). 

 

The initial number of credits being largely irrelevant in the stable regime, as seen thanks to the previous 
figure, we choose to set to 0 and let airlines make gains in initial regulations before spending them in 
subsequent ones. This also avoids raising the question of equity in the number of credits among 
airlines. Indeed, it could be argued that bigger airlines would need a higher number of initial credits to 
function properly.  

4.3.4 Reinjection parameter for honest agent 

Another parameter that was introduced was the ‘reinjection’, whereby an honest (in practice quasi-
honest) agent may spend more credits than what would be done with the purely honest rule. For 
instance, if the parameter is 0.5, it means that, on top of the credits spent for its preferred parameters 
(the ones coming from the regression in the approximation process), an agent will spend 50% of its 
remaining credits. This parameter was introduced as a mean to have a more stable regime in credits. 
Its impact can be seen in Figure 14, where we display the same kind of metrics as in Figure 10, with a 
reinjection parameter of 0.5. 
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Figure 14: Top: slope obtained out of a regression on the credits in the last 50 iterations of the game. Middle: 
average credits of AFR during the last 50 iterations. Bottom: Standard deviation over average on last 50 

iterations. 

It looks, however, that this parameter makes it more difficult to have a stable regime, as can be seen 
with the fact the fitted slope goes from negative to positive in a very short range of the default jump 
parameter. Even if this parameter may be of interest in designing a bounded agent, we chose to keep 
the value of this parameter 0 in the following. 

 

4.3.5 Calibration of rational agent 

As explained in section 3, the rational agent for CM needs to be calibrated. In particular, the 
relationship between average gain in cost and jump parameter modification has to be performed 
(done thanks to Figure 8). Another important calibration is the shape of the delay probability 
distribution, modelled as an exponential in section 3. Figure 15 shows the empirical distribution 
obtained with the experiments from section 4.2.3, with an exponential function regressed on the data. 

The agreement of the fitted function 𝑓(𝑥) =  𝐴𝑒−𝑥 𝜆⁄  with data is pretty good, with optimal scaling (𝐴) 
and time (𝜆) parameters equal to 0.146 and 4.73, respectively. 
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Figure 15: Distribution of delay. 

 

4.4 Impact of rationality in GLOBAL and CM 

We are interested in this section in the impact of having a more rational agent, as opposed to an honest 
agent that communicates its true cost, in particular for the credit mechanism. 

As seen previously, defining a rational agent is a hard task for the CM, because of the difficulty of the 
mapping between decisions and expected results of these decisions. This is partly due to the nature of 
the game, in particular its stochasticity, and even more prominently due to the approximation process 
done before the game, which adds a level of noise difficult to overcome for a rational agent. Hence, 
while we are expecting a rational agent to be better than an honest one, it will not always be the case 
in the following. We are still interested in seeing 1) how multi-sided games – where all agents are 
rational – compare with single-sided ones – where only one player is rational – and 2) see the expected 
drop of efficiency – if any – in the mechanism when introducing bounded agents. 

In this section, we are interested mainly in the efficiency of the mechanism, but keeping the metrics 
for AFR and the other players distinct in order to see the differential impact of the mechanism on these 
companies. 

4.4.1 In single-sided games 

First, we are interested in single-sided games, where we isolate a single player, which will be either 
honest or rational (and later bounded). All other agents act as honest agents, with the calibration 
explained in section 4.3. The agent we choose is AFR, the main company in general in the set of 
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regulations we are using. We are using them as agents to isolate a higher impact of the rational 
behaviour. 

Figure 16 shows the efficiency for all agents, AFR, and the other agents, where using a honest or a 
rational agent for AFR with the GLOBAL mechanism. A first thing to note is how AFR has naturally a 
much higher efficiency than small companies, even when companies are honest. This is expected, since 
AFR has a lot more flights than its competitors in the regulation set used, thus potentially having the 
highest potential gains in terms of costs avoided. 

The results are very clear: while the efficiency of AFR is increased, the efficiency of other agents drops 
to 0. This is completely to be expected. The ‘rational’ agent in this case will maximise its jump 
parameter, in order to make its flight seems more important than they are in reality (and more 
important than its competitors). As a result, the optimiser prioritises AFR flights, to the detriment of 
all other flights. 

 

Figure 16: efficiency of GLOBAL mechanism for all airlines (blue), AFR (orange), and other airlines (green), for 
an honest AFR (left) and a rational AFR (right). 

We now show the same experiment, but with the CM mechanism this time, in Figure 17. The first point 
to notice is that the efficiency of AFR drops, which is not what you would expect, given than a rational 
agent would be better performing than an honest agent in a single-sided game. The impact on the 
other companies seems also very mild, and in particular it is important to note this efficiency is far 
from dropping to 0, on the contrary of the previous mechanism.  
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Figure 17: efficiency of CM for all airlines (blue), AFR (orange), and other airlines (green), for an honest AFR 
and a rational one (right). 

These two figures illustrate the problem with gaming. Indeed, given a game with fixed rules, agents 
may (and will) try to take advantage in order to have the best outcome for them (here, the smallest 
cost possible). Gaming can destroy an otherwise very good mechanism, and is the main reason why 
one cannot just ask for airlines’ costs and solve the regulations. Even though the results are limited by 
the quality of the rationality of the agents introduced here, it seems that introducing credits counter-
balance to some extent the gaming behaviour, with honest company not losing everything from the 
gaming behaviour of other players (and here, even worse, very big players, which naturally have higher 
efficiencies).  

The next question is to know whether injecting rationality for all agents tends to rebalance the 
situation or will make it even worse. 

4.4.2 In multi-sided games 

Indeed, in multi-sided games, all agents are considered players, and here, for simplification, are 
considered to follow the same strategy. ‘Rationality’ here is thus to be considered as ‘single-sided 
rational’, i.e. that we are using agents faring better in the single-sided game (at least in theory…) that 
will now play the multi-sided one with the same strategy, and examine if the total efficiency drops or 
not. 

First, we show in Figure 18 the results when having all honest agents, one rational player (AFR, as in 
previous experiment), and all rational agents, in the case of the GLOBAL mechanism. The results are 
very clear: introducing rationality does not improve much the fate of other companies. While we were 
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expecting a fall of the efficiency for AFR, it seems that using only rational agents has the same effect 
as having the major player being rational. There might be a subtle statistical effect due to the size of 
the company here that would require more study to uncover. 

 

 

Figure 18: efficiency of GLOBAL for all airlines, AFR, and other airlines, with all honest players (left), AFR 
being rational (middle) and all players being rational (right). 

Figure 19 shows the same results for the CM. In this case, there is a visible drop of efficiency when all 
agents are rational, but mainly the other companies and not AFR. While it would have been expected 
to have a drop for AFR too, these results are more in line with what is expected in case of gaming from 
all players. Note, however, that the efficiency the other companies is clearly different from 0, contrary 
to the case of the GLOBAL algorithm. 
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Figure 19: efficiency of CM for all airlines, AFR, and other airlines, with all honest players (left), AFR being 
rational (middle) and all players being rational (right). 

Overall, the conclusion from these two figures is that the gaming effect from the main player is more 
important than the one from the other companies. In other words, it is crucial to take into account the 
gaming effect for the main player but not so much for the others. On top of that, it is clear that the 
introduction of credits in the mechanism has a net positive effect for small player when taking gaming 
effects into account, which is exactly why credits were introduced in the first place. 

4.5 Impact of behavioural biases in GLOBAL and CM 

In this section, we are interested in behavioural biases and their impact on the mechanisms. As noted 
previously, defining bounded agents with PT and HD is essentially distorting the decisions of a rational 
agent. Thus, the quality of the bounded agents is only as good as the quality of their rational counter-
parts, and we already highlighted some of the issues we encountered when defining the latter. 
However, it is interesting to note that one can still have an idea of the magnitude of the drop of 
efficiency – again, if any – when introducing these distortions. On top of that, we introduced the idea 
of a simpler kind of bounded agents in section 2 and 3, which is not defined with respect to the rational 
agent, but rather to the honest agent, considering that the latter may be a good approximation for real 
agents in some cases (for instance, when gaming is a difficult task). We also explore the results 
obtained with these strategies in this section. 

4.5.1 Bounded agents 

We start with the bounded agent type, defined with respect to the rational one. As explained in 
sections 2 and 3, this agent type introduces two independent distortions to the decision of the rational 

https://www.sesarju.eu/


D5.1 FIRST TACTICAL MODEL AND RESULTS  

   
 

Page I 43 
 

  
 

 

agent type: the presence of prospect function replacing the profit (PT), and the modification of the 
discount factor on future gains (HD). We first have a quick look at the isolated effects of these two 
ingredients. 

We also remind the reader that this agent type is only defined in the credits mechanism, because the 
rational agent of the GLOBAL mechanism maxes out its jump parameter (as shown in section 3), thus 
allowing no further meaningful distortion. 

4.5.1.1 Effect of PT and HD 

Like previously, we are interested in the effect on AFR and the other companies, although only AFR is 
bounded in this case. Figure 20 shows the efficiency of each of them when introducing PT, HD, and 
both combined, comparing with the rational case.  

First, it looks like the introduction of PT alone has almost no effect on the system, with possibly only a 
small drop in the efficiency of non-AFR companies. The introduction of HD is more drastic, with a quite 
a clear drop for the non-AFR companies and a small one for AFR. Interestingly, it seems that the effect 
of HD and PT compounds, since their combined effects is clearly higher than the sum of their isolated 
ones. Hence, as an approximation, one can consider that the behavioural biases reduce the efficiency 
of AFR by a few percentage points, and by half for the other ones. 

 

Figure 20: efficiency of CM for all agents (blue), AFR (orange), and other agents (green) when the simulations 
feature rational agents, agents with PT, agents with HD, and agents with both. 

4.5.1.2 One-sided and multi-sided game 

We then have a look at the single and multi-sided games when introducing behavioural biases, as 
shown respectively in Figure 21, comparing again the bounded case (now with PT and HD at the same 
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time) with the rational one. While there is a clear drop in the single-sided game, as already noted, the 
multi-sided game seems to be fairly insensitive to the introduction of the biases. It is very probable 
that the distortions introduced cancel each other in this case. While keeping in mind the caveats 
highlighted previously in this deliverable (section 3 for the rational part and section 4.1 for the 
approximation), it would mean that considering the agents as all rational could be a very good 
approximation to the real case, even when agents tend to be prone to behavioural biases. 

 

 

Figure 21: efficiency of CM for all agents (blue), AFR (orange), and other agents (green) when the simulations 
feature AFR as rational vs AFR as bounded (left) and all agents rational vs all agents bounded (right). 

 

4.5.2 Bounded simple 

We are now interested in seeing how the ‘bounded-simple' agents, defined with a distortion of their 
real cost but otherwise honest, behave. Because of the simplicity of its definition, we can actually use 
the GLOBAL algorithm in this case, and we show the corresponding results in Figure 22. Note that this 
time, we compare the results to the honest case, since the bounded-simple agent is defined with 
respect to the honest one. 

First, it is interesting to see that the distortion of AFR only seems to have a positive effect on the other 
companies, which are probably more prone to get a good place in the queue when AFR is making 
mistake. However, it is striking to see that the efficiency of AFR is exactly the same. It would tend to 
show that the mistakes do not drastically modify the queue in its disfavour, but only allows the other 
companies to gain advantages on some minor slots. 
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Figure 22: efficiency of GLOBAL for all agents (blue), AFR (orange), and other agents (green) when the 
simulations feature honest agents, one bounded-simple agent (AFR), and all bounded-simple agents. 

The introduction of bounded-simple strategies for everyone seems, on the contrary, to have a positive 
effect on AFR, and a negative effect on the other companies. In fact, AFR looks like it has a higher 
efficiency as in the fully honest case, which would tend to show that the errors of your competitors 
are more important for your efficiency than avoiding your own mistakes, at least if you are a major 
player. This might be because the competition is fierce for the very first slots. When other small 
companies make mistake, they might free these slots completely involuntary, while the major player 
always has a flight ready to take these slots, even if it makes other mistakes otherwise. 

Introducing bounded-simple agents seems to have a completely different impact in CM than bounded 
agents, however. As shown in Figure 23, the introduction of behavioural biases for AFR alone seems 
to destroy completely its efficiency, and gives a clear advantage to the other companies (in fact, this is 
the highest efficiency for these companies in any settings, almost 20%). Just like for GLOBAL algorithm 
though, introducing bounded strategies for them seems to benefit AFR greatly, with AFR recovering 
the efficiency from the honest case. This would tend to show, again, that the mistakes of your 
competitors are crucial when you are a major player. 
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Figure 23: efficiency of CM for all agents (blue), AFR (orange), and other agents (green) when the simulations 
feature honest agents, one bounded-simple agent (AFR), and all bounded-simple agents. 

 

4.6 Comparison of all mechanisms 

Before moving on to more general conclusions, we try to give an overall picture of the mechanisms 
and agents tested in this deliverable, which could guide the future decision of a policy maker when 
introducing these new schemes. 

In order to do this, we use the three indicators that were highlighted in section 2: efficiency, absolute 
equity (EQ1) and relative equity (EQ2), all aggregated for all airlines in the regulations. We focus on 
the case where all agents are of the same type, and we consider all the possible combinations of agents 
and mechanisms tested for the purpose of this deliverable. Figure 24 shows the results for efficiency, 
and Figure 25 for equity. 
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Figure 24: Efficiency for different mechanisms, with true costs (blue), honest agents with approximated 
functions (orange), rational (green), bounded (red), and bounded-simple agents (violet). 

First, as noted before, the “naked” UDPP is already fairly efficiency, with around 18% of cost saved 
with respect to FPFS in average. ISTOP allows to gain a couple of more percentage points, although 
using the approximation, even the best one, puts it under UDPP. Using NNBOUND and GLOBAL further 
improves the situation, culminating to a 26% of decrease in cost in average for the theoretical 
maximum (for our regulation dataset). Even with the approximation, being honest is marginally better 
in the GLOBAL algorithm than using UDPP. Interestingly, introducing credits improves the situation 
quite a lot, with around 24% of savings for honest agents, higher than the UDPP+ISTOP mechanism, 
even with exact cost functions. 

Introducing rational agents only improves marginally the situation for the GLOBAL algorithm, and 
decreases it for the CM one, probably due to the low quality of the rational scheme used here. Having 
behavioural biases only drops the efficiency by another percent in the CM case, or not at all if 
considering the bounded-simple strategy. 
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Figure 25: Equity indicators for different mechanisms, with true costs (blue), honest agents with 
approximated functions (orange), rational (green), bounded (red), and bounded-simple agents (violet). 

 

The picture for equity is also rich and complex. While NNBOUND seems to be the champion of equity 
among all mechanisms, the CM mechanism fares very badly. Even UDPP, which is supposed to be highly 
inequitable due to the inherent possibilities to rearrange flights for major players, fares better. 
Rationality seems to have a very bad impact on equity, which might have been expected. Indeed, it is 
fairly clear that having more flights allows you to rearrange your flights more aggressively when 
maximising your profit, even though it is unclear if the agents defined here are actually able to do that. 
Interestingly, the introduction of behavioural biases may have a positive or negative impact on equity 
indicators, depending on the flavour (bounded or bounded-simple).  
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5 Conclusions 

In this deliverable, we have explored the impact of different mechanisms for regulation solving, using 
different theoretical frameworks in order to paint a complete picture of the situation. We have 
introduced five main mechanisms, which were defined in previous deliverables and explored already 
in D4.2: 

• UDPP, a local intra-airline optimisation, 

• UDPP+ISTOP, a simple slot swap framework built on top of UDPP, 

• NNBOUND, where we try to find the best outcome cost-wise in total, while making sure that 
no one loses, 

• GLOBAL, where we are just interested in the best outcome for all airlines in total, 

• CM, where we introduced credits in order to mitigate the effects of gaming in the previous 
mechanism. 

We have introduced several agent types that mimic some of the behaviours that true airlines may 
have, or that were simply introduced for comparison purposes: 

• the random agent, which is performing random decisions, 

• the honest agent, which communicates its true costs to the central planner, to the best of its 
abilities, 

• the rational agent, which is trying to maximise its profit (minimising its costs), 

• the bounded agent, and its cousin the bounded-simple agent, which take into account 
behavioural biases, to which all humans are prone. 

Combining different mechanisms and the agent types, the study aimed to find out what the theoretical 
effects of the introduction of these mechanisms are. 

In order to do this, we built a dataset of regulations thanks to the Mercury simulator. Using many days 
of simulations, we built a dataset of regulations happening at CDG, including capacity information and 
cost structure for every airline involved in these regulations. This allowed us to run small scale 
simulations efficiently, building different agent types and letting them play the different mechanisms 
described above. 

 
A first crucial conclusion reached with the results of section 4.1 is that having a good idea of the shape 
of the cost functions is very important to have an accurate picture of the effect of a mechanism. 
Indeed, using realistic cost functions and exploring several approximation schemes, it became clear 
that communicating a badly approximated cost function to the central planner will destroy a good part 
of the efficiency of said mechanisms. We saw for instance that in an ideal world, even if airlines knew 
their true costs,  if they were forced to communicate their costs with the kind approximation tested 
here to the central optimiser in order for it to perform the best optimisation possible (with the GLOBAL 
algorithm), the efficiency could drop from 25% of savings to only 6%. Improving the approximation 
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archetype function improves the situation, but complicates the mechanism, since more parameters 
need to be communicated to the central optimiser8. Quite crucially, it is hard to beat the bare UDPP 
mechanism with an approximated function, which defeats the whole purpose of introducing an extra 
layer on top of it. Thus, our current recommendation is to study the approximation problem in depth 
before designing any new mechanism. This is true for the CM for instance, which relies at its heart on 
an approximation to the cost function. 

 
A second conclusion, more theoretical but with a very practical consequence, it that the CM game that 
we have defined is "hard" to play. By hard, we mean that finding a good strategy to find a better 
outcome than just the honest communication of the true cost to the central planner is far from 
obvious. While the best strategy is obvious for the GLOBAL game (at least in single-sided games: the 
airline just inflates their costs), the introduction of credits makes it very difficult to find a good strategy 
again. This is actually very good news, and is the reason why credits were introduced in the first place. 
Indeed, if finding an optimal strategy is very time-consuming, companies will naturally be tempted to 
play honestly. This is better for the mechanism, as can be seen clearly with the much higher efficiency 
reached by small companies in the CM game with respect to the GLOBAL one. Note, however, that this 
is not an absolute conclusion, since we have only scratched the surface of the possible strategies in 
multi-sided games. Going further, however, requires more advanced tools, like reinforcement learning, 
as discussed further below. 

 
A third conclusion concerns the behavioural aspect. Indeed, the introduction of biases seems to have 
a small (in general) but significant impact. Our simulations show that efficiency can change by a few 
percent points, even more in some cases. Our investigation seems to indicate that making mistake is 
less important when you are major airline and that your other competitors make some too. However, 
being the one to make mistakes seems to be penalising. These results would tend to show that 
including behavioural economics improves the quality of the prediction when designing such 
mechanisms, and that relying only on rational players may be dangerous from the indicator 
computation point of view. 

 
Overall, the CM mechanism seems to be faring well in terms of total saved costs. Its efficiency, even 
when introducing gaming and biases, seems to be slightly higher than UDPP, or even UDPP+ISTOP with 
real cost. While not as high as the theoretical maximum (GLOBAL with true costs), it seems better than 
the GLOBAL algorithm with approximated cost function. Its main drawback seems to be the equity. 
While GLOBAL has an equity comparable to UDPP in general, at least with true costs, CM is very 
inegalitarian. This is bad news, in particular with because credits were introduced in order to give more 
room to small airlines to make gains. It is still not clear to us what should be done exactly for the low-
volume users but we note the following points: 

• First, a better calibration of the CM might be needed. It is possible that high-volume users 
make scale returns on the credits, for instance with lots of unimportant flights fuelling the 

 

 

8 It is true in general for any mechanism if any kind of approximated cost is communicated to the NM. However, 
it is particularly crucial for CM, because each additional parameter creates new calibration issues (because it 
adds a new price and a new default parameter). 
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credit spendings on a few important ones. To counterbalance this effect, it may be worth trying 
to give different initial credit endowment to airlines for instance, based on the number of 
flights they have in regulations in average. 

• The CM mechanism is currently based on a global cost reduction optimisation, i.e. that the 
mechanism solves for minimum total cost across airlines. Another possibility is to include an 
equity indicator in the objective function itself. This would naturally drive the low-volume 
users to be less disadvantaged. In fact, it would be an easier way to create a balance between 
economic efficiency and equity (there is always a trade-off between these two), instead of 
designing new mechanisms and hoping they have better characteristics in equity while 
probably having lower economic efficiencies.  

• Before going further, we suggest however to study the exact reason why the low volume users 
are apparently disadvantaged. For instance, it may be that they have lower costs in average 
and thus cannot gain as much as the others from any mechanisms. However, it is still striking 
in this case that NNBOUND can reach such high degree of equality, while not sacrificing its 
economic efficiency too much. Hence, another possibility is to design a mechanism inspired by 
NNBOUND, maybe merging it with CM or ISTOP. 

 
This leads us to calibration problems. Indeed, the CM is more complex to calibrate than UDPP or 
UDPP+ISTOP, which have no tunable parameters once the basic rules are decided. On the contrary, 
the CM has as twice as many parameters as the number of parameters used in the approximation of 
the cost function (one price parameter for each, and one default parameter), plus the initial 
endowment of credits to each airline. In this deliverable we have simplified the problem, using some 
honest behaviour on most parameters except the one of importance (the jump), but a more general 
calibration should be performed. In particular, giving a different initial endowment of credits to 
different airlines based on the number of flights they have, may help counter-balancing some of the 
equity effects we have seen in the mechanism. Note also that having a more complex game has also a 
very good side effect on gaming issues, since winning strategies are even harder to come by and thus 
airlines will be tempted to go for honest communication of costs, even relying on automated "honest" 
tools. Further considerations on this subject will be made in the concept assessment deliverable D6.2, 
in particular on the subtle interplay between complexity, automation, and gaming. 

 
There are two main limitations to the present results. First, we have performed simulations only on a 
specific airport, CDG, for simplicity. It is not obvious whether the present results generalise easily to 
other airports, even if major hubs should behave fairly similarly. However, it is important to explore 
the impact of these mechanisms and agent types on the resolution of other airports in Europe, and 
this will be the task of D5.2. In that deliverable, we will use a more general dataset of regulations, 
computed all over Europe, in order to draw more general conclusions. We will also present a more 
detailed study on the effect of the size of regulations and the size of airlines on the efficiency and 
equity of the mechanisms. 

 
Second, as noted previously, we have only scratched the surface of optimal strategies. The 'rational' 
agents presented in section 2 and 3 are very simple and could be improved in many ways. A natural 
candidate is reinforcement learning, an optimisation framework which allows to find optimal 
strategies in complex iterated games. In particular, the RL framework aims at finding the best 
approximation for the mapping between an action (a decision) and its consequences (short and long 
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term) given the state of the agent and environment (the number of credits for example, but other 
information like the total number of slots can be included). This is typically done by using advanced 
machine learning models to approximate this mapping, like neural networks. An important aspect is 
to find the right level of information given to the agent and how to use them efficiently to predict the 
best action in a given situation. While the BEACON has already explored some of these techniques 
during the preparation of these results, we keep these research questions for another time. Thus, an 
example of practical steps that one could take to improve the current model are the following: 

• Frame the current game as a single-sided iterated game with continuous or discrete decision 
action space, with the reward being the cost saved by the player. 

• Find the relevant features to be used by the player to make the mapping between the potential 
decisions and the expected gain. 

• Train different models of agent, starting with simple artificial neural networks. 

• Study the characteristics of the optimal strategies for the different mechanisms and different 
strategies followed by non-players. 

• Test optimal strategies without training, as in multi-sided games from this deliverable. Study 
the matrix or function of reward depending on the strategies followed. Find numerically the 
Nash equilibrium(a), if any9. Study if it (they) are Pareto efficient. 

• Next, frame the game as multi-agent iterated game, with the reward of each agent being their 
cost saved. Allow for a degree of collaborative reward for agents to test gaming effects. 

• Train the model. Study its stability, its fixed points if any, in particular in regard to the strategies 
found for the single-sided game.  

• Conclude on the potential strategies likely to appear in reality and compute indicators 
accordingly. 

Finally, we will explore in D6.2 the consequences of the results contained in this deliverable on the 
potential implementation of the mechanisms. We will also highlight the next steps suggested for this 
line of research beyond BEACON. 

 

 

 

9 There is at least one if the decision space is discrete, according to the Nash theorem. 
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7 Acronyms 

Acronym Meaning 

AFR Air France 

BE Behavioural Economics 

CDG Charles de Gaulle airport 

CM Credit Mechanism 

FPFS First Plan First Served 

HD Hyperbolic Discount 

ISTOP Inter-airline Slot Trading Offer Provider 

NNBOUND Non-negative bounded optimisation 

PT Prospect Theory 

UDPP User-Driven Prioritisation Process 
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Appendix A Regimes in credit evolution during CM 
 

Figure 26 shows the transition of the evolutions of the number of credits (in particular for the main 
player) when the default jump parameter increases (resp. 0, 50, 100, 150, 200 euros). The regime goes 
from an absorptive regime (with credits going to 0 after a few iterations) to an explosive one (with 
credits going to infinity). 

 

 

 

 

Figure 26: Evolution of the number of credits for AFR and other companies for different values of the default 
jump parameter (see text for values). 
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Appendix B Auction mechanism and rationality 
We present in this annex the theoretical framework that would have been used to implement rational 
and bounded agents. The framework is similar to the one presented for the CM in section 3 and has 
the same limitations, notably the model mapping actions to probabilities of outcome. 
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